Llanblethian Orchards Cider Making Help Sheets Part one: Hydrometer, sugar and PH

Hydrometer temp correction chart
Temp in Celsius and hydrometer addition

C	$+/-$								
0	-0.0007	10	-0.0006	20	0.0009	30	0.0035	40	0.0069
1	-0.0008	11	-0.0005	21	0.0011	31	0.0038	41	0.0073
2	-0.0008	12	-0.0004	22	0.0013	32	0.0041	42	0.0077
3	-0.0009	13	-0.0003	23	0.0016	33	0.0044	43	0.0081
4	-0.0009	14	-0.0001	24	0.0018	34	0.0047	44	0.0085
5	-0.0009	15	0	25	0.0021	35	0.0051	45	0.0089
6	-0.0008	16	0.0002	26	0.0023	36	0.0054	46	0.0093
7	-0.0008	17	0.0003	27	0.0026	37	0.0058	47	0.0097
8	-0.0007	18	0.0005	28	0.0029	38	0.0061	48	0.0102
9	-0.0007	19	0.0007	29	0.0032	39	0.0065	49	0.0106

Example: 1.045 at $10^{\prime} \mathrm{C}=1.045+(-0.0006)=1.044 .4$

Sugar Addition to Juice

56 g sugar raises SG of 1 Gallon by 0.005

Sugar to add $=(\mathrm{DSG}-\mathrm{ISG}) / 0.005 * 56 * G$

$$
\begin{aligned}
\text { DSG } & =\text { Desired SG } \\
\text { ISG } & =\text { initial SG } \\
\text { G } & =\text { Gallons }
\end{aligned}
$$

Example:
Initial SG of 5 Gallons 1.020
Desired SG 1.050
$(1.050-1.020) / 0.005 * 56 * 5=1680 \mathrm{~g}$ Sugar

Sucralose Sweetening

Sucralose 10\% Stock solution

- 100 g Sucralose in 1L water
- 1 ml Solution in 1L gives $100 \mathrm{mg} / \mathrm{L} / \mathrm{ppm}$
- Legal limit 50ppm (mg/L)

Sucralose Addition Table	
Sweetness	Sucralose ppm (mg/L)
Dry	0
Medium Dry	25
Medium	35
Medium Sweet	45

Potential Alcohol From			
Hydrometer Table			
Gravity ABV Gravity ABV 1.010 0.4% 1.050 6.4 1.015 1.2% 1.055 7% 1.020 2.0% 1.060 7.7% 1.025 2.8% 1.065 8.3% 1.030 3.6% 1.070 9% 1.035 4.5% 1.075 9.6% 1.040 5.1% 1.080 10.2% 1.045 5.8% 1.085 10.9%			

Calculation of ABV

$\mathrm{ABV}=(\mathrm{OG}-\mathrm{FG}) * 125$
OG = Original Gravity
FG = Final Gravity

Example:
OG 1.050, FG 0.990

$$
(1.050-0.990) * 125=7.5 \%
$$

Adjusting apple juice pH

Due to bufferring malic acid addition is inaccurate. Test after each $1 \mathrm{~g} / \mathrm{L}$ addition.
$1 \mathrm{~g} / \mathrm{l}$ of Malic acid lowers the pH by up to 0.3 pH
Malic acid $=$ litres * 3.333 * (initial $\mathrm{pH}-\operatorname{desired} \mathrm{pH}$)

Example:
20L of apple juice pH 4.3 lower to pH 3.8
20 * 3.333 * (4.3-3.8) = 33.33g Malic Acid

SG / Sweetness of finished cider
Dry 1.004
Med Dry 1.008
Medium 1.012
Medium Sweet 1.015
Sweet 1.020
Very Sweet 1.025

Stock sulphite solutions

10\% Sulphite solution

(free sulphur dioxide is $\mathbf{5 0 \%}$ in solution hence often referred to as $\mathbf{5 \%}$ solution)

Dissolve 100 g sulphite in 1 L water for 10% stock solution

5 ml solution per gallon $=50 \mathrm{ppm}$ sulphite
Sulphiting using pH
pH affects useful or free S02 in solution
A higher pH reduces free SO2 so more needed
The legal limit is 200ppm

Sulphite addition using Cambden tablets
For Litre containers
$\mathrm{C}=(\mathrm{S} / 227.3) * \mathrm{~L}$
For Gallon containers

$$
\mathrm{C}=(\mathrm{S} / 50) * \mathrm{G}
$$

C = Cambden tables
$\mathrm{S}=$ required sulphite from table
$\mathrm{L}=$ volume of cider in litres
$\mathrm{G}=$ volume of cider in Gallons
Sulphite addition using 10% sulphite solution

For Litre containers

$$
\mathrm{SL}=(\mathrm{S} / 50) * \mathrm{~L}
$$

For Gallon containers

$$
\mathrm{SL}=(\mathrm{S} / 11) * \mathrm{G}
$$

$\mathrm{SL}=\mathrm{ml}$ stock solution
S = required sulphite from table
$\mathrm{L}=$ volume of cider in litres
$\mathrm{G}=$ volume of cider in Gallons
Example:
1 gallon of cider at pH 3.5
$52 \mathrm{mg} / \mathrm{l}$ sulphite needed to inhibit wild yeast

Llanblethian Orchards Cider Making Help Sheets Part three:
 Pasteurisation, Force Carbonation

Pasteurisation
 Measured in Pasteurisation Units PU

$$
1 \mathrm{PU}=60^{\prime} \mathrm{C} \text { for } 1 \mathrm{~min}
$$

For every 7'C rise there is a ten fold increase in pasteurisation

PU's needed for sterilisation

Cider: 50 PU+
Apple Juice: 500-1000 PU+
PU $=t \times 10 \wedge((T-60) / 7)$
PU = Pasteurisation Units
$\mathrm{t}=$ time in mins
$\mathrm{T}=$ temperature in 'C
Example:
Pasteurise cider at 67'C to achieve 50 PU

$$
\text { PU / }\left(10^{\wedge}((\mathrm{T}-60 / 7)=\mathrm{t}=5 \mathrm{mins}\right.
$$

Water bath pasteurisation of cider bottles / bib's
Set water bath at $75^{\prime} \mathrm{C}$
When bottle / bib reaches 66 'C remove and cap and lie on side / invert bib so the inside of cap is pasteurised.

Water bath pasteurisation of apple juice

Set water bath 80'c
When bottle / bib reaches 75'C remove and cap and lie on side / invert bib so inside of cap is pasteurised.

Filling Bag in Boxes

Fill bags by weight. Take the specific gravity in SG and multiply by the required volume in litres.

$$
\begin{gathered}
\text { W = V*SG } \\
\mathrm{W}=\text { weight in kg } \\
\mathrm{V}=\text { Volume in litres } \\
\mathrm{SG}=\text { Specific Gravity } \\
\\
\text { Example: } \\
\text { 20L bag in box SG } 0.996 \\
20 * 0.996=19.92 \mathrm{~kg}
\end{gathered}
$$

In-Line Pasteurisation

If bag in box is filled, capped and boxed at or above 64 'c it will receive enough PU's to achieve pasteurisation.

Set Pasteuriser at 67’c.

Allow holding tank to fill to allow tank to become pasteurised by the heat.

Fill bags up and cap and box up immediately
Arrange boxes in rows with air gap between to allow bags to cool to limit cooked apple flavours.

Force Carbonation of Kegs

Kegs are force carbonated at high pressure.

Between 40-50 PSI

They are weighed before and during carbonation. Once weight achieved they are done.

Weight gain of various kegs with vols co2				
Vols CO2	Corny Keg $(17.5 \mathrm{~L})$	20 L Keg	30 L Keg	50 L Keg
2.0	69	79 g	119 g	198 g
2.1	73	83 g	125 g	208 g
2.2	76	87 g	130 g	217 g
2.3	80	91 g	136 g	227 g
2.4	83	95 g	142 g	237 g
2.5	87	99 g	148 g	247 g
2.6	90	103 g	154 g	257 g
2.7	93	107 g	160 g	267 g
2.8	97	111 g	166 g	277 g
2.9	100	115 g	172 g	287 g
3.0	104	119 g	178 g	297 g

Flash pasteurisation

We will pasteurise at 75'c

Set pasteuriser to $79^{\prime} \mathrm{C}$ to achieve temp

If cider reaches $75^{\prime} \mathrm{C}$ it needs 21.6 secs to achieve 50 PU's

With 20% margin cider must take >26 secs to travel through flash pasteurisation coil.

Coil is 19 meters with inner diameter of 6.7 mm . So flow rate for 26 seconds would be 1.37 secs / m.

Therefore max flow rate is $2.9 \mathrm{~L} / \mathrm{min}$

Llanblethian Orchards Cider Making Help Sheets Part four:
 Peracetic, Caustic, yeast nutrients and Apple Juice and keeving

Apple Juice

Ensure pH is below 3.8 to inhibit Clostridia sp
Ratio of sugar to acidity important
Brix(\% Sugar) / \% acid between 15-20

Add Vitamin C at 500 ppm or 500 mg per litre. (level teaspoon per 2 gallons)

Pasteurise in bottle immediately after adding Vitamin C
Set water bath to $80^{\prime} \mathrm{C}$ when bottles reach $75^{\prime} \mathrm{C}$, remove, cap and lie on their side.

Caustic Cleaning

Caustic Soda is Sodium Hydroxide
Cleaning solution is 2-3\% Sodium Hydroxide

20g / Litre gives 2\% Caustic solution

- Always add caustic to water as it's exothermic.
- Always use eye protection and gloves.
- Latex gloves dissolve. Do not use!

For hot caustic cleaning temperature is between 50-75’C
Working time 15 mins and over.

Keeving

Keeving needs to be performed when the temperature is below 10 'C to slow start of vigorous fermentation.

Sulphite should not be added until after keeving process to not inhibit apiculate yeasts needed for the chapeau Brun to rise.
pH MUST be above 3.6 for the enzyme to work.

Day 1

Mill very ripe fruit and leave overnight to macerate.

Day 2

Press the pomace and add 1-1.5ml of Pectin Methyl Esterase (PME) enzyme per 100L of juice. Mix thoroughly.

Day 3

Add 100 ml of 40% calcium chloride solution per 100L of juice and mix thoroughly.

Day7-10
Once the Chapeau Brun has risen sufficiently carefully rack the clear juice off into a new container.

Stock 40\% Calcium Chloride Solution

Dissolve 500 g of hydrated calcium chloride flakes in hot water and make up to 1 L

Peracetic Acid
Stock Solution is 5\%
make up as needed as rapidly degrades after dillution
Dilution Rates:
Spraying (instant Sterilisation) 20ml /Litre
Soaking overnight 10ml / Litre

Yeast Nutrients

If fermenting cider smells of hydrogen sulphide (rotten eggs) yeast is stressed by high temp or lack of nutrients.

Diammonium Phosphate (DAP)

Needed by yeast to grow. Dosage up to 300mg /L

Thiamine (vitamin B1)

Needed by yeast to turn sugar to alcohol. Dosage up to 0.2mg/L

Stuck Fermentations
 To proceed to dryness

50ppm (mg/L) DAP for each 0.010 SG drop to dryness.

To stick again at lower SG (for bottle conditioning)
25ppm(mg/L) DAP for each 0.010 SG drop

Formulae to stick at lower SG
DAP ppm= (InitalSG - DesiredSG) $* 2500$

DAP addition using 10\% DAP solution
10% DAP ml $=($ DAP ppm / 100 $) *$ Litres

Stock 10\% DAP Solution
 (DAP solution does not keep make as needed)
 Dissolve 100 g DAP in 1L water
 1 ml Solution $=100 \mathrm{ppm}$ DAP if dissolved in 1 L

